Learning Control Under Extreme Uncertainty

نویسنده

  • Vijaykumar Gullapalli
چکیده

A peg-in-hole insertion task is used as an example to illustrate the utility of direct associative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. Task complexity due to the use of an unchamfered hole and a clearance of less than 0.2mm is compounded by the presence of positional uncertainty of magnitude exceeding 10 to 50 times the clearance. Despite this extreme degree of uncertainty, our results indicate that direct reinforcement learning can be used to learn a robust reactive control strategy that results in skillful peg-in-hole insertions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Advances in Neural Information Processing Systems

A peg-in-hole insertion task is used as an example to illustrate the utility of direct associative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. Task complexity due to the use of an unchamfered hole and a clearance of less than 0:2mm is compounded by the presence of positional uncertainty of magnitude exceeding 10 to 50 times the clear...

متن کامل

Simulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine

In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...

متن کامل

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

Application of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process

Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...

متن کامل

Climate Change Impact on Precipitation Extreme Events in Uncertainty Situation; Passing from Global Scale to Regional Scale

Global warming and then climate change are important topics studied by researchers throughout the world in the recent decades. In these studies, climatic parameters changes are investigated. Considering large-scaled output of AOGCMs and low precision in computational cells, uncertainty analysis is one of the principles in doing hydrological studies. For this reason, it is tried that investigati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992